Ideal Lattices and Ring-LWE: Overview and Open Problems

Chris Peikert
Georgia Institute of Technology

ICERM
23 April 2015

Agenda

(1) Ring-LWE and its hardness from ideal lattices
(2) Open questions

Selected bibliography:
LPR'10 V. Lyubashevsky, C. Peikert, O. Regev.
"On Ideal Lattices and Learning with Errors Over Rings," Eurocrypt'10 and JACM'13.

LPR'13 V. Lyubashevsky, C. Peikert, O. Regev.
"A Toolkit for Ring-LWE Cryptography," Eurocrypt'13.

A Brief, Selective History of Lattice Cryptography

1996 Ajtai's worst-case/average-case reduction, one-way function \& public-key encryption

A Brief, Selective History of Lattice Cryptography

1996 Ajtai's worst-case/average-case reduction, one-way function \& public-key encryption (very inefficient)

1996 NTRU efficient ring-based encryption

A Brief, Selective History of Lattice Cryptography

1996 Ajtai's worst-case/average-case reduction, one-way function \& public-key encryption

1996 NTRU efficient ring-based encryption

2002 Micciancio's ring-based one-way function with worst-case hardness

A Brief, Selective History of Lattice Cryptography

1996 Ajtai's worst-case/average-case reduction, one-way function \& public-key encryption

1996 NTRU efficient ring-based encryption

2002 Micciancio's ring-based one-way function with worst-case hardness

2005 Regev's LWE: encryption with worst-case hardness

A Brief, Selective History of Lattice Cryptography

1996 Ajtai's worst-case/average-case reduction, one-way function \& public-key encryption

1996 NTRU efficient ring-based encryption

2002 Micciancio's ring-based one-way function with worst-case hardness

2005 Regev's LWE: encryption with worst-case hardness

2008- Countless applications of LWE

A Brief, Selective History of Lattice Cryptography

1996 Ajtai's worst-case/average-case reduction, one-way function \& public-key encryption

1996 NTRU efficient ring-based encryption

2002 Micciancio's ring-based one-way function with worst-case hardness

2005 Regev's LWE: encryption with worst-case hardness

2008- Countless applications of LWE

2010 Ring-LWE: efficient encryption, worst-case hardness

Learning With Errors [Regev'05]

- Parameters: dimension n, modulus $q=\operatorname{poly}(n)$.

Learning With Errors [Regev'05]

- Parameters: dimension n, modulus $q=\operatorname{poly}(n)$.
- Search: find secret $\mathrm{s} \in \mathbb{Z}_{q}^{n}$ given many 'noisy inner products'

$$
\begin{array}{ll}
\mathbf{a}_{1} \leftarrow \mathbb{Z}_{q}^{n} & , \quad b_{1} \approx\left\langle\mathbf{a}_{1}, \mathbf{s}\right\rangle \bmod q \\
\mathbf{a}_{2} \leftarrow \mathbb{Z}_{q}^{n}, & b_{2} \approx\left\langle\mathbf{a}_{2}, \mathbf{s}\right\rangle \bmod q
\end{array}
$$

Learning With Errors [Regev'05]

- Parameters: dimension n, modulus $q=\operatorname{poly}(n)$.
- Search: find secret $\mathrm{s} \in \mathbb{Z}_{q}^{n}$ given many 'noisy inner products'

$$
\begin{array}{ll}
\mathbf{a}_{1} \leftarrow \mathbb{Z}_{q}^{n} & , \quad b_{1}=\left\langle\mathbf{a}_{1}, \mathbf{s}\right\rangle+e_{1} \in \mathbb{Z}_{q} \\
\mathbf{a}_{2} \leftarrow \mathbb{Z}_{q}^{n} & , \quad b_{2}=\left\langle\mathbf{a}_{2}, \mathbf{s}\right\rangle+e_{2} \in \mathbb{Z}_{q}
\end{array}
$$

$$
\sqrt{n} \leq \text { error } \ll q
$$

Learning With Errors [Regev'05]

- Parameters: dimension n, modulus $q=\operatorname{poly}(n)$.
- Search: find secret $\mathrm{s} \in \mathbb{Z}_{q}^{n}$ given many 'noisy inner products'

$$
\left(\begin{array}{c}
\vdots \\
\mathbf{A} \\
\vdots
\end{array}\right),\left(\begin{array}{c}
\vdots \\
\mathbf{b} \\
\vdots
\end{array}\right)=\mathbf{A s}+\mathbf{e}
$$

Learning With Errors [Regev'05]

- Parameters: dimension n, modulus $q=\operatorname{poly}(n)$.
- Search: find secret $\mathrm{s} \in \mathbb{Z}_{q}^{n}$ given many 'noisy inner products'

$$
\begin{aligned}
& \left(\begin{array}{c}
\vdots \\
\mathbf{A} \\
\vdots
\end{array}\right),\left(\begin{array}{c}
\vdots \\
\mathbf{b} \\
\vdots
\end{array}\right)=\mathbf{A} \mathbf{s}+\mathbf{e} \\
& \sqrt{n} \leq \text { error } \ll q
\end{aligned}
$$

- Decision: distinguish (A, b) from uniform (A, b)

Learning With Errors [Regev'05]

- Parameters: dimension n, modulus $q=\operatorname{poly}(n)$.
- Search: find secret $\mathrm{s} \in \mathbb{Z}_{q}^{n}$ given many 'noisy inner products'

$$
\left(\begin{array}{c}
\vdots \\
\mathbf{A} \\
\vdots
\end{array}\right),\left(\begin{array}{c}
\vdots \\
\mathbf{b} \\
\vdots
\end{array}\right)=\mathbf{A s}+\mathbf{e} \quad \underset{, 1| |\left|\| \|\| \|_{\|}\right| \|\left.\right|_{\mid}}{ }
$$

- Decision: distinguish (A, b) from uniform (A, b)

LWE is Hard (... maybe even for quantum!)
worst case
lattice problems \leq search-LWE $\leq{ }_{\tau}$ decision-LWE \leq crypto (quantum [R'05]) [BFKL'93,R'05,...]

Learning With Errors [Regev'05]

- Parameters: dimension n, modulus $q=\operatorname{poly}(n)$.
- Search: find secret $\mathrm{s} \in \mathbb{Z}_{q}^{n}$ given many 'noisy inner products'
- Decision: distinguish (A, b) from uniform (A, b)

LWE is Hard (... maybe even for quantum!)
worst case
lattice problems

$$
\begin{aligned}
& \leq \text { search-LWE } \leq \text { decision-LWE }_{\leq} \leq \text {crypto } \\
& \left(\text { quantum }\left[R^{\prime} 05\right]\right) \quad\left[B F K L^{\prime} 93, R^{\prime} 05, \ldots\right]
\end{aligned}
$$

- Also a classical reduction for search-LWE [P'09,BLPRS'13]

LWE is Versatile

What kinds of crypto can we do with LWE?

LWE is Versatile

What kinds of crypto can we do with LWE?
Public Key Encryption and Oblivious Transfer
[R'05,PVW'08]
Actively Secure PKE (w/o RO)
[PW'08,P'09,MP'12]

LWE is Versatile

What kinds of crypto can we do with LWE?
Public Key Encryption and Oblivious Transfer [R'05,PVW'08] Actively Secure PKE (w/o RO)
[PW'08,P'09,MP'12]

Identity-Based Encryption (in RO model) Hierarchical ID-Based Encryption (w/o RO)
[CHKP'10,ABB'10]

LWE is Versatile

What kinds of crypto can we do with LWE?
Public Key Encryption and Oblivious Transfer
Actively Secure PKE (w/o RO)
[PW'08,P'09,MP'12]

Identity-Based Encryption (in RO model) Hierarchical ID-Based Encryption (w/o RO)
[CHKP'10,ABB'10]

Leakage-Resilient Crypto [AGV'09,DGKPV'10,GKPV'10,ADNSWW'10,...]
Fully Homomorphic Encryption
Attribute-Based Encryption
[AFV'11,GVW'13,BGG+'14,...]
Symmetric-Key Primitives
[BPR'12,BMLR'13,BP'14,...]
Other Exotic Encryption [ACPS'09,BHHI'10,OP'10,...]
the list goes on...

LWE is (Sort Of) Efficient

- Getting one pseudorandom scalar requires an n-dim inner product $\bmod q$

LWE is (Sort Of) Efficient

- Getting one pseudorandom scalar requires an n-dim inner product $\bmod q$
$\left(\cdots \mathbf{a}_{i} \cdots\right)\left(\begin{array}{c}\vdots \\ \mathrm{s} \\ \vdots\end{array}\right)+e=b \in \mathbb{Z}_{q}$
- Can amortize each \mathbf{a}_{i} over many secrets s_{j}, but still $\tilde{O}(n)$ work per scalar output.

LWE is (Sort Of) Efficient

- Getting one pseudorandom scalar requires an n-dim inner product $\bmod q$
- Can amortize each \mathbf{a}_{i} over many secrets s_{j}, but still $\tilde{O}(n)$ work per scalar output.
- Cryptosystems have rather large keys:

LWE is (Sort Of) Efficient

- Getting one pseudorandom scalar requires an n-dim inner product $\bmod q$
- Can amortize each \mathbf{a}_{i} over many secrets s_{j}, but still $\tilde{O}(n)$ work per scalar output.
- Cryptosystems have rather large keys:

$$
p k=\underbrace{\left(\begin{array}{c}
\vdots \\
\mathbf{A} \\
\vdots
\end{array}\right)}_{n}, \quad\left(\begin{array}{c}
\vdots \\
\mathbf{b} \\
\vdots
\end{array}\right)\} \Omega(n)
$$

- Can fix \mathbf{A} for all users, but still $\geq n^{2}$ work to encrypt \& decrypt an n-bit message

Wishful Thinking. . .

$$
\left(\begin{array}{c}
\vdots \\
\mathbf{a}_{i} \\
\vdots
\end{array}\right) \star\left(\begin{array}{c}
\vdots \\
\mathrm{s} \\
.
\end{array}\right)+\left(\begin{array}{c}
\vdots \\
\mathbf{e}_{i} \\
\cdot
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
\mathbf{b}_{i} \\
.
\end{array}\right) \in \mathbb{Z}_{q}^{n} \quad \begin{aligned}
& \text { Get } n \text { pseudorandom scalars } \\
& \text { from just one (cheap) } \\
& \text { product operation? }
\end{aligned}
$$

Wishful Thinking. . .

$$
\left(\begin{array}{c}
\vdots \\
\mathbf{a}_{i} \\
\vdots
\end{array}\right) \star\left(\begin{array}{c}
\vdots \\
\mathrm{s} \\
.
\end{array}\right)+\left(\begin{array}{c}
\vdots \\
\mathbf{e}_{i} \\
.
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
\mathbf{b}_{i} \\
\vdots
\end{array}\right) \in \mathbb{Z}_{q}^{n} \quad \begin{aligned}
& \text { Get } n \text { pseudorandom scalars } \\
& \text { from just one (cheap) } \\
& \text { product operation? }
\end{aligned}
$$

Question

- How to define the product ' \star ' so that $\left(\mathbf{a}_{i}, \mathbf{b}_{i}\right)$ is pseudorandom?

Wishful Thinking. . .

$$
\left(\begin{array}{c}
\vdots \\
\mathbf{a}_{i} \\
\vdots
\end{array}\right) \star\left(\begin{array}{c}
\vdots \\
\mathrm{s} \\
.
\end{array}\right)+\left(\begin{array}{c}
\vdots \\
\mathbf{e}_{i} \\
.
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
\mathbf{b}_{i} \\
\vdots
\end{array}\right) \in \mathbb{Z}_{q}^{n} \quad \begin{aligned}
& \text { Get } n \text { pseudorandom scalars } \\
& \text { from just one (cheap) } \\
& \text { product operation? }
\end{aligned}
$$

Question

- How to define the product ' \star ' so that $\left(\mathbf{a}_{i}, \mathbf{b}_{i}\right)$ is pseudorandom?
- Careful! With small error, coordinate-wise multiplication is insecure!

Wishful Thinking. . .

$$
\left(\begin{array}{c}
\vdots \\
\mathbf{a}_{i} \\
\vdots
\end{array}\right) \star\left(\begin{array}{c}
\vdots \\
\mathbf{s} \\
\vdots
\end{array}\right)+\left(\begin{array}{c}
\vdots \\
\mathbf{e}_{i} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
\mathbf{b}_{i} \\
\vdots
\end{array}\right) \in \mathbb{Z}_{q}^{n}
$$

- Get n pseudorandom scalars from just one (cheap) product operation?

Question

- How to define the product ' \star ' so that $\left(\mathbf{a}_{i}, \mathrm{~b}_{i}\right)$ is pseudorandom?
- Careful! With small error, coordinate-wise multiplication is insecure!

Answer

- ' \star ' $=$ multiplication in a polynomial ring: e.g., $\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$.

Fast and practical with FFT: $n \log n$ operations $\bmod q$.

Wishful Thinking. . .

$$
\left(\begin{array}{c}
\vdots \\
\mathbf{a}_{i} \\
\vdots
\end{array}\right) \star\left(\begin{array}{c}
\vdots \\
\mathbf{s} \\
\vdots
\end{array}\right)+\left(\begin{array}{c}
\vdots \\
\mathbf{e}_{i} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
\mathbf{b}_{i} \\
\vdots
\end{array}\right) \in \mathbb{Z}_{q}^{n}
$$

- Get n pseudorandom scalars from just one (cheap) product operation?

Question

- How to define the product ' \star ' so that $\left(\mathbf{a}_{i}, \mathbf{b}_{i}\right)$ is pseudorandom?
- Careful! With small error, coordinate-wise multiplication is insecure!

Answer

- ' \star ' $=$ multiplication in a polynomial ring: e.g., $\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$.

Fast and practical with FFT: $n \log n$ operations $\bmod q$.

- Same ring structures used in NTRU cryptosystem [HPS'98], \& in compact one-way / CR hash functions [Mic'02,PR'06,LM'06,...]

LWE Over Rings, Over Simplified

- Let $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for n a power of two, and $R_{q}=R / q R$

LWE Over Rings, Over Simplified

- Let $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for n a power of two, and $R_{q}=R / q R$
\star Elements of R_{q} are deg $<n$ polynomials with mod- q coefficients
* Operations in R_{q} are very efficient using FFT-like algorithms

LWE Over Rings, Over Simplified

- Let $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for n a power of two, and $R_{q}=R / q R$
\star Elements of R_{q} are deg $<n$ polynomials with mod- q coefficients
* Operations in R_{q} are very efficient using FFT-like algorithms
- Search: find secret ring element $s(X) \in R_{q}$, given:

$$
\begin{array}{ll}
a_{1} \leftarrow R_{q} \quad, \quad & b_{1}=a_{1} \cdot s+e_{1} \in R_{q} \\
a_{2} \leftarrow R_{q} \quad, \quad & b_{2}=a_{2} \cdot s+e_{2} \in R_{q} \\
a_{3} \leftarrow R_{q} \quad, \quad & b_{3}=a_{3} \cdot s+e_{3} \in R_{q}
\end{array} \quad\left(e_{i} \in R\right. \text { are 'small') }
$$

LWE Over Rings, Over Simplified

- Let $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for n a power of two, and $R_{q}=R / q R$
\star Elements of R_{q} are deg $<n$ polynomials with mod- q coefficients
\star Operations in R_{q} are very efficient using FFT-like algorithms
- Search: find secret ring element $s(X) \in R_{q}$, given:

$$
\begin{array}{ll}
a_{1} \leftarrow R_{q} \quad, \quad & b_{1}=a_{1} \cdot s+e_{1} \in R_{q} \\
a_{2} \leftarrow R_{q} \quad, \quad & b_{2}=a_{2} \cdot s+e_{2} \in R_{q} \\
a_{3} \leftarrow R_{q} \quad, \quad & b_{3}=a_{3} \cdot s+e_{3} \in R_{q}
\end{array} \quad\left(e_{i} \in R \text { are 'small' }\right)
$$

Note: $\left(a_{i}, b_{i}\right)$ are uniformly random subject to $b_{i}-a_{i} \cdot s \approx 0$

LWE Over Rings, Over Simplified

- Let $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for n a power of two, and $R_{q}=R / q R$
\star Elements of R_{q} are deg $<n$ polynomials with mod- q coefficients
\star Operations in R_{q} are very efficient using FFT-like algorithms
- Search: find secret ring element $s(X) \in R_{q}$, given:

$$
\begin{array}{ll}
a_{1} \leftarrow R_{q} \quad, \quad & b_{1}=a_{1} \cdot s+e_{1} \in R_{q} \\
a_{2} \leftarrow R_{q} \quad, \quad & b_{2}=a_{2} \cdot s+e_{2} \in R_{q} \\
a_{3} \leftarrow R_{q} \quad, \quad & b_{3}=a_{3} \cdot s+e_{3} \in R_{q}
\end{array} \quad\left(e_{i} \in R\right. \text { are 'small') }
$$

Note: $\left(a_{i}, b_{i}\right)$ are uniformly random subject to $b_{i}-a_{i} \cdot s \approx 0$

- Decision: distinguish $\left(a_{i}, b_{i}\right)$ from uniform $\left(a_{i}, b_{i}\right) \in R_{q} \times R_{q}$ (with noticeable advantage)

Hardness of Ring-LWE

- Two main theorems (reductions):
worst-case approx-SVP on ideal lattices in R

\leq search R-LWE \leq decision R-LWE
 (classical,
 any $\left.R=\mathcal{O}_{K}\right) \quad$ any cyclotomic R)

Hardness of Ring-LWE

- Two main theorems (reductions):
worst-case approx-SVP on ideal lattices in R

\leq_{τ} search R-LWE \leq_{τ} decision R-LWE
 (quantum,
 any $\left.R=\mathcal{O}_{K}\right) \quad$ any cyclotomic R)

(1) If you can find s given $\left(a_{i}, b_{i}\right)$, then you can find approximately shortest vectors in any ideal lattice in R (using a quantum algorithm).

Hardness of Ring-LWE

- Two main theorems (reductions):
worst-case approx-SVP on ideal lattices in R

\leq_{τ} search R-LWE \leq_{τ} decision R-LWE
 (quantum,
 any $\left.R=\mathcal{O}_{K}\right) \quad$ any cyclotomic R)

(1) If you can find s given $\left(a_{i}, b_{i}\right)$, then you can find approximately shortest vectors in any ideal lattice in R (using a quantum algorithm).
(2) If you can distinguish $\left(a_{i}, b_{i}\right)$ from $\left(a_{i}, b_{i}\right)$, then you can find s.

Hardness of Ring-LWE

- Two main theorems (reductions):

```
worst-case approx-SVP
    on ideal lattices in R
(quantum,
    < search R-LWE < decision R-LWE
    (classical,
any R=\mp@subsup{\mathcal{O}}{K}{\prime})\quad\mathrm{ any cyclotomic }R\mathrm{ )}
```

(1) If you can find s given $\left(a_{i}, b_{i}\right)$, then you can find approximately shortest vectors in any ideal lattice in R (using a quantum algorithm).
(2) If you can distinguish $\left(a_{i}, b_{i}\right)$ from $\left(a_{i}, b_{i}\right)$, then you can find s.

- Then:

decision R-LWE \leq lots of crypto

Hardness of Ring-LWE

- Two main theorems (reductions):

```
worst-case approx-SVP
    on ideal lattices in R
        < search }R\mathrm{ -LWE }\mp@subsup{\}{\nwarrow}{
        (quantum,
any R=\mp@subsup{\mathcal{O}}{K}{})\quad\mathrm{ any cyclotomic }R\mathrm{ )}
```

(1) If you can find s given $\left(a_{i}, b_{i}\right)$, then you can find approximately shortest vectors in any ideal lattice in R (using a quantum algorithm).
(2) If you can distinguish $\left(a_{i}, b_{i}\right)$ from $\left(a_{i}, b_{i}\right)$, then you can find s.

- Then:

decision R-LWE \leq lots of crypto

« If you can break the crypto, then you can distinguish $\left(a_{i}, b_{i}\right)$ from $\left(a_{i}, b_{i}\right) \ldots$

Ideal Lattices

- Say $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for power-of-two n.

$$
\left(\operatorname{Or} R=\mathcal{O}_{K} .\right)
$$

- An ideal $\mathcal{I} \subseteq R$ is closed under + and - , and under \cdot with R.

Ideal Lattices

- Say $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for power-of-two n.
- An ideal $\mathcal{I} \subseteq R$ is closed under + and - , and under \cdot with R.

To get ideal lattices, embed R and its ideals into \mathbb{R}^{n}. How?

Ideal Lattices

- Say $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for power-of-two n.

$$
\left(\operatorname{Or} R=\mathcal{O}_{K} .\right)
$$

- An ideal $\mathcal{I} \subseteq R$ is closed under + and - , and under \cdot with R.

To get ideal lattices, embed R and its ideals into \mathbb{R}^{n}. How?
(1) 'Obvious' answer: 'coefficient embedding'

$$
a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1} \in R \quad \mapsto \quad\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{Z}^{n}
$$

Ideal Lattices

- Say $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for power-of-two n.

$$
\left(\operatorname{Or} R=\mathcal{O}_{K} .\right)
$$

- An ideal $\mathcal{I} \subseteq R$ is closed under + and - , and under \cdot with R.

To get ideal lattices, embed R and its ideals into \mathbb{R}^{n}. How?
(1) 'Obvious' answer: 'coefficient embedding'

$$
a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1} \in R \quad \mapsto \quad\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{Z}^{n}
$$

+ is coordinate-wise, but analyzing • is cumbersome.

Ideal Lattices

- Say $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for power-of-two n.
- An ideal $\mathcal{I} \subseteq R$ is closed under + and - , and under - with R.

To get ideal lattices, embed R and its ideals into \mathbb{C}^{n}. How?
(1) 'Obvious' answer: 'coefficient embedding'

$$
a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1} \in R \quad \mapsto \quad\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{Z}^{n}
$$

+ is coordinate-wise, but analyzing • is cumbersome.
(2) [Minkowski]: 'canonical embedding.' Let $\omega=\exp (\pi i / n) \in \mathbb{C}$, so roots of $X^{n}+1$ are $\omega^{1}, \omega^{3}, \ldots, \omega^{2 n-1}$. Embed:

$$
a(X) \in R \quad \mapsto \quad\left(a\left(\omega^{1}\right), a\left(\omega^{3}\right), \ldots, a\left(\omega^{2 n-1}\right)\right) \in \mathbb{C}^{n}
$$

Ideal Lattices

- Say $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for power-of-two n.
- An ideal $\mathcal{I} \subseteq R$ is closed under + and - , and under - with R.

To get ideal lattices, embed R and its ideals into \mathbb{C}^{n}. How?
(1) 'Obvious' answer: 'coefficient embedding'

$$
a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1} \in R \quad \mapsto \quad\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{Z}^{n}
$$

+ is coordinate-wise, but analyzing • is cumbersome.
(2) [Minkowski]: 'canonical embedding.' Let $\omega=\exp (\pi i / n) \in \mathbb{C}$, so roots of $X^{n}+1$ are $\omega^{1}, \omega^{3}, \ldots, \omega^{2 n-1}$. Embed:

$$
a(X) \in R \quad \mapsto \quad\left(a\left(\omega^{1}\right), a\left(\omega^{3}\right), \ldots, a\left(\omega^{2 n-1}\right)\right) \in \mathbb{C}^{n}
$$

Both + and \cdot are coordinate-wise.

Ideal Lattices

- Say $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for power-of-two n.
- An ideal $\mathcal{I} \subseteq R$ is closed under + and - , and under \cdot with R.

To get ideal lattices, embed R and its ideals into \mathbb{R}^{n}. How?
(1) 'Obvious' answer: 'coefficient embedding'

$$
a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1} \in R \quad \mapsto \quad\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{Z}^{n}
$$

+ is coordinate-wise, but analyzing • is cumbersome.
(2) [Minkowski]: 'canonical embedding.' Let $\omega=\exp (\pi i / n) \in \mathbb{C}$, so roots of $X^{n}+1$ are $\omega^{1}, \omega^{3}, \ldots, \omega^{2 n-1}$. Embed:

$$
a(X) \in R \quad \mapsto \quad\left(a\left(\omega^{1}\right), a\left(\omega^{3}\right), \ldots, a\left(\omega^{2 n-1}\right)\right) \in \mathbb{C}^{n}
$$

Both + and \cdot are coordinate-wise.
(NB: LWE error distribution is Gaussian in canonical embedding.)

Ideal Lattices

- Say $R=\mathbb{Z}[X] /\left(X^{2}+1\right)$. Embeddings map $X \mapsto \pm i$.

Ideal Lattices

- Say $R=\mathbb{Z}[X] /\left(X^{2}+1\right)$. Embeddings map $X \mapsto \pm i$.
- $\mathcal{I}=\langle X-2,-3 X+1\rangle$ is an ideal in R.

Ideal Lattices

- Say $R=\mathbb{Z}[X] /\left(X^{2}+1\right)$. Embeddings map $X \mapsto \pm i$.
- $\mathcal{I}=\langle X-2,-3 X+1\rangle$ is an ideal in R.

(Approximate) Shortest Vector Problem

- Given (an arbitrary basis of) an arbitrary ideal $\mathcal{I} \subseteq R$, find a nearly shortest nonzero $a \in \mathcal{I}$.

Hardness of Search Ring-LWE

Theorem 1

For any large enough q, solving search R-LWE
is as hard as quantumly solving poly (n)-approx SVP in any (worst-case) ideal lattice in $R=\mathcal{O}_{K}$.

Hardness of Search Ring-LWE

Theorem 1

For any large enough q, solving search R-LWE is as hard as quantumly solving poly (n)-approx SVP in any (worst-case) ideal lattice in $R=\mathcal{O}_{K}$.

- Proof follows the template of [Regev'05] for LWE \& arbitrary lattices.

Quantum component used as 'black-box;' only classical part needs adaptation to the ring setting.

Hardness of Search Ring-LWE

Theorem 1

For any large enough q, solving search R-LWE is as hard as quantumly solving poly (n)-approx SVP in any (worst-case) ideal lattice in $R=\mathcal{O}_{K}$.

- Proof follows the template of [Regev'05] for LWE \& arbitrary lattices. Quantum component used as 'black-box;' only classical part needs adaptation to the ring setting.
- Main technique: 'clearing ideals' while preserving R-module structure:

$$
\begin{array}{rll}
\mathcal{I} / q \mathcal{I} & \mapsto & R / q R, \\
\mathcal{I}^{\vee} / q \mathcal{I}^{\vee} & \mapsto & R^{\vee} / q R^{\vee} .
\end{array}
$$

Uses Chinese remainder theorem and theory of duality for ideals.

Hardness of Decision Ring-LWE

Theorem 2

Solving decision R-LWE in any cyclotomic $R=\mathbb{Z}\left[\zeta_{m}\right] \cong \mathbb{Z}[X] / \Phi_{m}(X)$
(for any $\operatorname{poly}(n)$-bounded prime $q=1 \bmod m$) is as hard as solving search R-LWE.

Hardness of Decision Ring-LWE

Theorem 2

Solving decision R-LWE in any cyclotomic $R=\mathbb{Z}\left[\zeta_{m}\right] \cong \mathbb{Z}[X] / \Phi_{m}(X)$
(for any $\operatorname{poly}(n)$-bounded prime $q=1 \bmod m$) is as hard as solving search R-LWE.

Facts Used in the Proof

- \mathbb{Z}_{q}^{*} has order $q-1=0 \bmod m$, so has an element ω of order m.

Hardness of Decision Ring-LWE

Theorem 2

Solving decision R-LWE in any cyclotomic $R=\mathbb{Z}\left[\zeta_{m}\right] \cong \mathbb{Z}[X] / \Phi_{m}(X)$
(for any $\operatorname{poly}(n)$-bounded prime $q=1 \bmod m$) is as hard as solving search R-LWE.

Facts Used in the Proof

- \mathbb{Z}_{q}^{*} has order $q-1=0 \bmod m$, so has an element ω of order m.
- Modulo $q, \Phi_{m}(X)$ has $n=\varphi(m)$ roots ω^{j}, for $j \in \mathbb{Z}_{m}^{*}$.

Hardness of Decision Ring-LWE

Theorem 2

Solving decision R-LWE in any cyclotomic $R=\mathbb{Z}\left[\zeta_{m}\right] \cong \mathbb{Z}[X] / \Phi_{m}(X)$
(for any $\operatorname{poly}(n)$-bounded prime $q=1 \bmod m$) is as hard as solving search R-LWE.

Facts Used in the Proof

- \mathbb{Z}_{q}^{*} has order $q-1=0 \bmod m$, so has an element ω of order m.
- Modulo $q, \Phi_{m}(X)$ has $n=\varphi(m)$ roots ω^{j}, for $j \in \mathbb{Z}_{m}^{*}$.
- So there is a ring isomorphism $R_{q} \cong \mathbb{Z}_{q}^{n}$ given by

$$
a(X) \in R_{q} \mapsto \quad\left(a\left(\omega^{j}\right)\right)_{j \in \mathbb{Z}_{m}^{*}} \in \mathbb{Z}_{q}^{n}
$$

Hardness of Decision Ring-LWE

Theorem 2

Solving decision Ring-LWE in $R_{q}=\mathbb{Z}_{q}[X] / \Phi_{m}(X)$ is as hard as solving search Ring-LWE.

Proof Sketch

Given: \mathcal{O} distinguishes samples $(a, b \approx a \cdot s)$ from uniform (a, b).
Goal: Find $s \in R_{q}$, given samples $(a, b \approx a \cdot s)$.

Hardness of Decision Ring-LWE

Theorem 2

Solving decision Ring-LWE in $R_{q}=\mathbb{Z}_{q}[X] / \Phi_{m}(X)$
is as hard as solving search Ring-LWE.

Proof Sketch

Given: \mathcal{O} distinguishes samples $(a, b \approx a \cdot s)$ from uniform (a, b).
Goal: Find $s \in R_{q}$, given samples $(a, b \approx a \cdot s)$.
(1) Equivalent to finding $s\left(\omega^{j}\right) \in \mathbb{Z}_{q}$ for all $j \in \mathbb{Z}_{m}^{*}$.

Hardness of Decision Ring-LWE

Theorem 2

Solving decision Ring-LWE in $R_{q}=\mathbb{Z}_{q}[X] / \Phi_{m}(X)$
is as hard as solving search Ring-LWE.

Proof Sketch

Given: \mathcal{O} distinguishes samples $(a, b \approx a \cdot s)$ from uniform (a, b).
Goal: Find $s \in R_{q}$, given samples $(a, b \approx a \cdot s)$.
(1) Equivalent to finding $s\left(\omega^{j}\right) \in \mathbb{Z}_{q}$ for all $j \in \mathbb{Z}_{m}^{*}$.
(2) Hybrid argument: randomize one $b\left(\omega^{j}\right) \in \mathbb{Z}_{q}$; or two; or three; or ... Then \mathcal{O} must distinguish relative to some $\omega^{j^{*}}$.

Hardness of Decision Ring-LWE

Theorem 2

Solving decision Ring-LWE in $R_{q}=\mathbb{Z}_{q}[X] / \Phi_{m}(X)$
is as hard as solving search Ring-LWE.

Proof Sketch

Given: \mathcal{O} distinguishes samples $(a, b \approx a \cdot s)$ from uniform (a, b).
Goal: Find $s \in R_{q}$, given samples $(a, b \approx a \cdot s)$.
(1) Equivalent to finding $s\left(\omega^{j}\right) \in \mathbb{Z}_{q}$ for all $j \in \mathbb{Z}_{m}^{*}$.
(2) Hybrid argument: randomize one $b\left(\omega^{j}\right) \in \mathbb{Z}_{q}$; or two; or three; or \ldots Then \mathcal{O} must distinguish relative to some $\omega^{j^{*}}$.
(3) Using \mathcal{O}, guess-and-check to find $s\left(\omega^{j^{*}}\right) \in \mathbb{Z}_{q}$.

Hardness of Decision Ring-LWE

Theorem 2

Solving decision Ring-LWE in $R_{q}=\mathbb{Z}_{q}[X] / \Phi_{m}(X)$
is as hard as solving search Ring-LWE.

Proof Sketch

Given: \mathcal{O} distinguishes samples $(a, b \approx a \cdot s)$ from uniform (a, b).
Goal: Find $s \in R_{q}$, given samples $(a, b \approx a \cdot s)$.
(1) Equivalent to finding $s\left(\omega^{j}\right) \in \mathbb{Z}_{q}$ for all $j \in \mathbb{Z}_{m}^{*}$.
(2) Hybrid argument: randomize one $b\left(\omega^{j}\right) \in \mathbb{Z}_{q}$; or two; or three; or ... Then \mathcal{O} must distinguish relative to some $\omega^{j^{*}}$.
(3) Using \mathcal{O}, guess-and-check to find $s\left(\omega^{j^{*}}\right) \in \mathbb{Z}_{q}$.
(4) How to find other $s\left(\omega^{j}\right)$? Couldn't \mathcal{O} be useless at other roots?

Hardness of Decision Ring-LWE

Theorem 2

Solving decision Ring-LWE in $R_{q}=\mathbb{Z}_{q}[X] / \Phi_{m}(X)$
is as hard as solving search Ring-LWE.

Proof Sketch

Given: \mathcal{O} distinguishes samples $(a, b \approx a \cdot s)$ from uniform (a, b).
Goal: Find $s \in R_{q}$, given samples $(a, b \approx a \cdot s)$.
(1) Equivalent to finding $s\left(\omega^{j}\right) \in \mathbb{Z}_{q}$ for all $j \in \mathbb{Z}_{m}^{*}$.
(2) Hybrid argument: randomize one $b\left(\omega^{j}\right) \in \mathbb{Z}_{q}$; or two; or three; or ... Then \mathcal{O} must distinguish relative to some $\omega^{j^{*}}$.
(3) Using \mathcal{O}, guess-and-check to find $s\left(\omega^{j^{*}}\right) \in \mathbb{Z}_{q}$.
(4) How to find other $s\left(\omega^{j}\right)$? Couldn't \mathcal{O} be useless at other roots? $\omega \mapsto \omega^{k}\left(k \in \mathbb{Z}_{m}^{*}\right)$ permutes roots of $\Phi_{m}(X)$, and preserves error.

Hardness of Decision Ring-LWE

Theorem 2

Solving decision Ring-LWE in $R_{q}=\mathbb{Z}_{q}[X] / \Phi_{m}(X)$
is as hard as solving search Ring-LWE.

Proof Sketch

Given: \mathcal{O} distinguishes samples $(a, b \approx a \cdot s)$ from uniform (a, b).
Goal: Find $s \in R_{q}$, given samples $(a, b \approx a \cdot s)$.
(1) Equivalent to finding $s\left(\omega^{j}\right) \in \mathbb{Z}_{q}$ for all $j \in \mathbb{Z}_{m}^{*}$.
(2) Hybrid argument: randomize one $b\left(\omega^{j}\right) \in \mathbb{Z}_{q}$; or two; or three; or ... Then \mathcal{O} must distinguish relative to some $\omega^{j^{*}}$.
(3) Using \mathcal{O}, guess-and-check to find $s\left(\omega^{j^{*}}\right) \in \mathbb{Z}_{q}$.
(4. How to find other $s\left(\omega^{j}\right)$? Couldn't \mathcal{O} be useless at other roots? $\omega \mapsto \omega^{k}\left(k \in \mathbb{Z}_{m}^{*}\right)$ permutes roots of $\Phi_{m}(X)$, and preserves error. So send each ω^{j} to $\omega^{j^{*}}$, and use \mathcal{O} to find $s\left(\omega^{j}\right)$.

Open Problems: Reductions

(1) Search- R-LWE is quantumly at least as hard as approx- R-SVP. Is there a classical reduction?

Open Problems: Reductions

(1) Search- R-LWE is quantumly at least as hard as approx- R-SVP. Is there a classical reduction?
\star [P'09] reduces GapSVP (i.e., estimate $\lambda_{1}(\mathcal{L})$) on general lattices to plain-LWE, classically.

Open Problems: Reductions

(1) Search- R-LWE is quantumly at least as hard as approx- R-SVP. Is there a classical reduction?
\star [P'09] reduces GapSVP (i.e., estimate $\lambda_{1}(\mathcal{L})$) on general lattices to plain-LWE, classically.
\star But estimating $\lambda_{1}(\mathcal{L})$ is trivially easy on ideal lattices! Finding short vectors is what appears hard.

Open Problems: Reductions

(1) Search- R-LWE is quantumly at least as hard as approx- R-SVP. Is there a classical reduction?
\star [P'09] reduces GapSVP (i.e., estimate $\lambda_{1}(\mathcal{L})$) on general lattices to plain-LWE, classically.

* But estimating $\lambda_{1}(\mathcal{L})$ is trivially easy on ideal lattices! Finding short vectors is what appears hard.
(2) Search- and decision- R-LWE are equivalent in cyclotomic R. Does this hold in other kinds of rings?

Open Problems: Reductions

(1) Search- R-LWE is quantumly at least as hard as approx- R-SVP. Is there a classical reduction?
\star [P'09] reduces GapSVP (i.e., estimate $\lambda_{1}(\mathcal{L})$) on general lattices to plain-LWE, classically.
\star But estimating $\lambda_{1}(\mathcal{L})$ is trivially easy on ideal lattices!
Finding short vectors is what appears hard.
(2) Search- and decision- R-LWE are equivalent in cyclotomic R.

Does this hold in other kinds of rings?

* Yes, for any Galois number field (identical proof).

Open Problems: Reductions

(1) Search- R-LWE is quantumly at least as hard as approx- R-SVP.

Is there a classical reduction?

* [P'09] reduces GapSVP (i.e., estimate $\lambda_{1}(\mathcal{L})$) on general lattices to plain-LWE, classically.
\star But estimating $\lambda_{1}(\mathcal{L})$ is trivially easy on ideal lattices! Finding short vectors is what appears hard.
(2) Search- and decision- R-LWE are equivalent in cyclotomic R.

Does this hold in other kinds of rings?

* Yes, for any Galois number field (identical proof).
* Probably not, for carefully constructed rings S, moduli q, and errors!

Open Problems: Reductions

(1) Search- R-LWE is quantumly at least as hard as approx- R-SVP.

Is there a classical reduction?
\star [P'09] reduces GapSVP (i.e., estimate $\lambda_{1}(\mathcal{L})$) on general lattices to plain-LWE, classically.

* But estimating $\lambda_{1}(\mathcal{L})$ is trivially easy on ideal lattices! Finding short vectors is what appears hard.
(2) Search- and decision- R-LWE are equivalent in cyclotomic R.

Does this hold in other kinds of rings?

* Yes, for any Galois number field (identical proof).
\star Probably not, for carefully constructed rings S, moduli q, and errors! Decision- S-LWE easily broken, but search unaffected. [EHL'14,ELOS'15]

Open Problems: Reductions

(1) Search- R-LWE is quantumly at least as hard as approx- R-SVP.

Is there a classical reduction?
\star [P'09] reduces GapSVP (i.e., estimate $\lambda_{1}(\mathcal{L})$) on general lattices to plain-LWE, classically.

* But estimating $\lambda_{1}(\mathcal{L})$ is trivially easy on ideal lattices!

Finding short vectors is what appears hard.
(2) Search- and decision- R-LWE are equivalent in cyclotomic R.

Does this hold in other kinds of rings?
\star Yes, for any Galois number field (identical proof).

* Probably not, for carefully constructed rings S, moduli q, and errors! Decision- S-LWE easily broken, but search unaffected. [EHL'14,ELOS'15] "cyclotomic fields, used for Ring-LWE, are uniquely protected against the attacks presented in this paper"

Open Problems: Attacks

(1) We know approx- R-SVP $\leq R$-LWE (quantumly). Other direction? Can we solve R-LWE using an oracle for approx- R-SVP?

Open Problems: Attacks

(1) We know approx- R-SVP $\leq R$-LWE (quantumly). Other direction?

Can we solve R-LWE using an oracle for approx- R-SVP?
$\star R$-LWE samples $\left(a_{i}, b_{i}\right)_{i=1, \ldots, \ell}$ don't readily translate to ideals in R.

Open Problems: Attacks

(1) We know approx- R-SVP $\leq R$-LWE (quantumly). Other direction?

Can we solve R-LWE using an oracle for approx- R-SVP?
$\star R$-LWE samples $\left(a_{i}, b_{i}\right)_{i=1, \ldots, \ell}$ don't readily translate to ideals in R.
\star They do yield a BDD instance on an R-module lattice:

$$
\mathcal{L}=\left\{\left(v_{i}\right): v_{i}=a_{i} \cdot z \quad(\bmod q R)\right\} \subseteq R^{\ell}
$$

Open Problems: Attacks

(1) We know approx- R-SVP $\leq R$-LWE (quantumly). Other direction?

Can we solve R-LWE using an oracle for approx- R-SVP?
$\star R$-LWE samples $\left(a_{i}, b_{i}\right)_{i=1, \ldots, \ell}$ don't readily translate to ideals in R.
\star They do yield a BDD instance on an R-module lattice:

$$
\mathcal{L}=\left\{\left(v_{i}\right): v_{i}=a_{i} \cdot z \quad(\bmod q R)\right\} \subseteq R^{\ell}
$$

(2) How hard/easy is approx-R-SVP, anyway? (In cyclotomics etc.)

Open Problems: Attacks

(1) We know approx- R-SVP $\leq R$-LWE (quantumly). Other direction?

Can we solve R-LWE using an oracle for approx- R-SVP?
$\star R$-LWE samples $\left(a_{i}, b_{i}\right)_{i=1, \ldots, \ell}$ don't readily translate to ideals in R.
\star They do yield a BDD instance on an R-module lattice:

$$
\mathcal{L}=\left\{\left(v_{i}\right): v_{i}=a_{i} \cdot z \quad(\bmod q R)\right\} \subseteq R^{\ell}
$$

(2) How hard/easy is approx- R-SVP, anyway? (In cyclotomics etc.)
« Despite abundant ring structure (e.g., subfields, Galois), no substantial improvement over attacks on general lattices.

Open Problems: Attacks

(1) We know approx- R-SVP $\leq R$-LWE (quantumly). Other direction?

Can we solve R-LWE using an oracle for approx- R-SVP?
$\star \quad R$-LWE samples $\left(a_{i}, b_{i}\right)_{i=1, \ldots, \ell}$ don't readily translate to ideals in R.
\star They do yield a BDD instance on an R-module lattice:

$$
\mathcal{L}=\left\{\left(v_{i}\right): v_{i}=a_{i} \cdot z \quad(\bmod q R)\right\} \subseteq R^{\ell}
$$

(2) How hard/easy is approx- R-SVP, anyway? (In cyclotomics etc.)
\star Despite abundant ring structure (e.g., subfields, Galois), no substantial improvement over attacks on general lattices.
\star Next up: attacks on a specialized variant: given a principal ideal \mathcal{I} guaranteed to have an "unusually short" generator, find it.

Open Problems: Attacks

(1) We know approx- R-SVP $\leq R$-LWE (quantumly). Other direction?

Can we solve R-LWE using an oracle for approx- R-SVP?
$\star R$-LWE samples $\left(a_{i}, b_{i}\right)_{i=1, \ldots, \ell}$ don't readily translate to ideals in R.
\star They do yield a BDD instance on an R-module lattice:

$$
\mathcal{L}=\left\{\left(v_{i}\right): v_{i}=a_{i} \cdot z \quad(\bmod q R)\right\} \subseteq R^{\ell}
$$

(2) How hard/easy is approx- R-SVP, anyway? (In cyclotomics etc.)

ฝ Despite abundant ring structure (e.g., subfields, Galois), no substantial improvement over attacks on general lattices.

* Next up: attacks on a specialized variant: given a principal ideal \mathcal{I} guaranteed to have an "unusually short" generator, find it.
* These conditions are extremely rare for general ideals, so (worst-case) approx- R-SVP is unaffected.

